Struct arrayvec::ArrayVec
[−]
[src]
pub struct ArrayVec<A: Array> { // some fields omitted }
A vector with a fixed capacity.
The ArrayVec
is a vector backed by a fixed size array. It keeps track of
the number of initialized elements.
The vector is a contiguous value that you can store directly on the stack if needed.
It offers a simple API but also dereferences to a slice, so that the full slice API is available.
ArrayVec can be converted into a by value iterator.
Methods
impl<A: Array> ArrayVec<A>
fn new() -> ArrayVec<A>
Create a new empty ArrayVec
.
Capacity is inferred from the type parameter.
use arrayvec::ArrayVec; let mut array = ArrayVec::<[_; 16]>::new(); array.push(1); array.push(2); assert_eq!(&array[..], &[1, 2]); assert_eq!(array.capacity(), 16);
fn len(&self) -> usize
Return the number of elements in the ArrayVec
.
use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3]); array.pop(); assert_eq!(array.len(), 2);
fn capacity(&self) -> usize
Return the capacity of the ArrayVec
.
use arrayvec::ArrayVec; let array = ArrayVec::from([1, 2, 3]); assert_eq!(array.capacity(), 3);
fn push(&mut self, element: A::Item) -> Option<A::Item>
Push element
to the end of the vector.
Return None
if the push succeeds, or and return Some(
element )
if the vector is full.
use arrayvec::ArrayVec; let mut array = ArrayVec::<[_; 2]>::new(); array.push(1); array.push(2); let overflow = array.push(3); assert_eq!(&array[..], &[1, 2]); assert_eq!(overflow, Some(3));
fn insert(&mut self, index: usize, element: A::Item) -> Option<A::Item>
Insert element
in position index
.
Shift up all elements after index
. If any is pushed out, it is returned.
Return None
if no element is shifted out.
use arrayvec::ArrayVec; let mut array = ArrayVec::<[_; 2]>::new(); assert_eq!(array.insert(0, "x"), None); assert_eq!(array.insert(0, "y"), None); assert_eq!(array.insert(0, "z"), Some("x")); assert_eq!(array.insert(1, "w"), Some("y")); assert_eq!(&array[..], &["z", "w"]);
fn pop(&mut self) -> Option<A::Item>
Remove the last element in the vector.
Return Some(
element )
if the vector is non-empty, else None
.
use arrayvec::ArrayVec; let mut array = ArrayVec::<[_; 2]>::new(); array.push(1); assert_eq!(array.pop(), Some(1)); assert_eq!(array.pop(), None);
fn swap_remove(&mut self, index: usize) -> Option<A::Item>
Remove the element at index
and swap the last element into its place.
This operation is O(1).
Return Some(
element )
if the index is in bounds, else None
.
use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3]); assert_eq!(array.swap_remove(0), Some(1)); assert_eq!(&array[..], &[3, 2]); assert_eq!(array.swap_remove(10), None);
fn remove(&mut self, index: usize) -> Option<A::Item>
Remove the element at index
and shift down the following elements.
Return Some(
element )
if the index is in bounds, else None
.
use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3]); assert_eq!(array.remove(0), Some(1)); assert_eq!(&array[..], &[2, 3]); assert_eq!(array.remove(10), None);
fn clear(&mut self)
Remove all elements in the vector.
fn retain<F>(&mut self, f: F) where F: FnMut(&mut A::Item) -> bool
Retains only the elements specified by the predicate.
In other words, remove all elements e
such that f(&mut e)
returns false.
This method operates in place and preserves the order of the retained
elements.
use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3, 4]); array.retain(|x| *x & 1 != 0 ); assert_eq!(&array[..], &[1, 3]);
unsafe fn set_len(&mut self, length: usize)
Set the vector's length without dropping or moving out elements
May panic if length
is greater than the capacity.
This function is unsafe
because it changes the notion of the
number of “valid” elements in the vector. Use with care.
fn drain<R: RangeArgument>(&mut self, range: R) -> Drain<A>
Create a draining iterator that removes the specified range in the vector and yields the removed items from start to end. The element range is removed even if the iterator is not consumed until the end.
Note: It is unspecified how many elements are removed from the vector,
if the Drain
value is leaked.
Panics if the starting point is greater than the end point or if the end point is greater than the length of the vector.
use arrayvec::ArrayVec; let mut v = ArrayVec::from([1, 2, 3]); let u: Vec<_> = v.drain(0..2).collect(); assert_eq!(&v[..], &[3]); assert_eq!(&u[..], &[1, 2]);
fn into_inner(self) -> Result<A, Self>
Return the inner fixed size array, if it is full to its capacity.
Return an Ok
value with the array if length equals capacity,
return an Err
with self otherwise.
Note:
This function may incur unproportionally large overhead
to move the array out, its performance is not optimal.
fn dispose(self)
Dispose of self
without the overwriting that is needed in Drop.
fn as_slice(&self) -> &[A::Item]
Return a slice containing all elements of the vector.
fn as_mut_slice(&mut self) -> &mut [A::Item]
Return a mutable slice containing all elements of the vector.
Methods from Deref<Target=[A::Item]>
1.0.0fn len(&self) -> usize
1.0.0fn is_empty(&self) -> bool
1.0.0fn first(&self) -> Option<&T>
Returns the first element of a slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
1.0.0fn first_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the first element of a slice, or None
if it is empty
1.5.0fn split_first(&self) -> Option<(&T, &[T])>
Returns the first and all the rest of the elements of a slice.
1.5.0fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
Returns the first and all the rest of the elements of a slice.
1.5.0fn split_last(&self) -> Option<(&T, &[T])>
Returns the last and all the rest of the elements of a slice.
1.5.0fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
Returns the last and all the rest of the elements of a slice.
1.0.0fn last(&self) -> Option<&T>
Returns the last element of a slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
1.0.0fn last_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the last item in the slice.
1.0.0fn get(&self, index: usize) -> Option<&T>
Returns the element of a slice at the given index, or None
if the
index is out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(None, v.get(3));
1.0.0fn get_mut(&mut self, index: usize) -> Option<&mut T>
Returns a mutable reference to the element at the given index,
or None
if the index is out of bounds
1.0.0unsafe fn get_unchecked(&self, index: usize) -> &T
Returns a pointer to the element at the given index, without doing bounds checking.
1.0.0unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T
Returns an unsafe mutable pointer to the element in index
1.0.0fn as_ptr(&self) -> *const T
Returns an raw pointer to the slice's buffer
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
1.0.0fn as_mut_ptr(&mut self) -> *mut T
Returns an unsafe mutable pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
1.0.0fn swap(&mut self, a: usize, b: usize)
Swaps two elements in a slice.
Arguments
- a - The index of the first element
- b - The index of the second element
Panics
Panics if a
or b
are out of bounds.
Example
let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);
1.0.0fn reverse(&mut self)
Reverse the order of elements in a slice, in place.
Example
let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);
1.0.0fn iter(&self) -> Iter<T>
Returns an iterator over the slice.
1.0.0fn iter_mut(&mut self) -> IterMut<T>
Returns an iterator that allows modifying each value
1.0.0fn windows(&self, size: usize) -> Windows<T>
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Example
Print the adjacent pairs of a slice (i.e. [1,2]
, [2,3]
,
[3,4]
):
let v = &[1, 2, 3, 4]; for win in v.windows(2) { println!("{:?}", win); }
1.0.0fn chunks(&self, size: usize) -> Chunks<T>
Returns an iterator over size
elements of the slice at a
time. The chunks are slices and do not overlap. If size
does not divide the
length of the slice, then the last chunk will not have length
size
.
Panics
Panics if size
is 0.
Example
Print the slice two elements at a time (i.e. [1,2]
,
[3,4]
, [5]
):
let v = &[1, 2, 3, 4, 5]; for win in v.chunks(2) { println!("{:?}", win); }
1.0.0fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>
Returns an iterator over chunk_size
elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last chunk will not
have length chunk_size
.
Panics
Panics if chunk_size
is 0.
1.0.0fn split_at(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2);
1.0.0fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
Divides one &mut
into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Example
let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }
1.0.0fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
Print the slice split by numbers divisible by 3 (i.e. [10, 40]
,
[20]
, [50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.split(|num| *num % 3 == 0) { println!("{:?}", group); }
1.0.0fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over mutable subslices separated by elements that
match pred
. The matched element is not contained in the subslices.
1.0.0fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
1.0.0fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
1.0.0fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
1.0.0fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
1.0.0fn contains(&self, x: &T) -> bool where T: PartialEq<T>
Returns true if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
1.0.0fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
Returns true if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
1.0.0fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
Returns true if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
1.0.0fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord
Binary search a sorted slice for a given element.
If the value is found then Ok
is returned, containing the
index of the matching element; if the value is not found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1,4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });
1.0.0fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering
Binary search a sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If a matching value is found then returns Ok
, containing
the index for the matched element; if no match is found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1,4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });
1.0.0fn sort(&mut self) where T: Ord
Sorts the slice, in place.
This is equivalent to self.sort_by(|a, b| a.cmp(b))
.
This is a stable sort.
Examples
let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]);
1.7.0fn sort_by_key<B, F>(&mut self, f: F) where F: FnMut(&T) -> B, B: Ord
Sorts the slice, in place, using key
to extract a key by which to
order the sort by.
This sort is O(n log n)
worst-case and stable, but allocates
approximately 2 * n
, where n
is the length of self
.
This is a stable sort.
Examples
let mut v = [-5i32, 4, 1, -3, 2]; v.sort_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);
1.0.0fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering
Sorts the slice, in place, using compare
to compare
elements.
This sort is O(n log n)
worst-case and stable, but allocates
approximately 2 * n
, where n
is the length of self
.
Examples
let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);
1.7.0fn clone_from_slice(&mut self, src: &[T]) where T: Clone
Copies the elements from src
into self
.
The length of this slice must be the same as the slice passed in.
Panics
This function will panic if the two slices have different lengths.
Example
let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.clone_from_slice(&src); assert!(dst == [1, 2, 3]);
fn copy_from_slice(&mut self, src: &[T]) where T: Copy
copy_from_slice
)Copies all elements from src
into self
, using a memcpy.
The length of src
must be the same as self
.
Panics
This function will panic if the two slices have different lengths.
Example
#![feature(copy_from_slice)] let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.copy_from_slice(&src); assert_eq!(src, dst);
1.0.0fn to_vec(&self) -> Vec<T> where T: Clone
Copies self
into a new Vec
.
1.0.0fn into_vec(self: Box<[T]>) -> Vec<T>
Converts self
into a vector without clones or allocation.
Trait Implementations
impl<A: Array> Drop for ArrayVec<A>
fn drop(&mut self)
impl<A: Array> Deref for ArrayVec<A>
impl<A: Array> DerefMut for ArrayVec<A>
impl<A: Array> From<A> for ArrayVec<A>
Create an ArrayVec
from an array.
use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3]); assert_eq!(array.len(), 3); assert_eq!(array.capacity(), 3);
fn from(array: A) -> Self
impl<'a, A: Array> IntoIterator for &'a ArrayVec<A>
Iterate the ArrayVec
with references to each element.
use arrayvec::ArrayVec; let array = ArrayVec::from([1, 2, 3]); for elt in &array { // ... }
impl<'a, A: Array> IntoIterator for &'a mut ArrayVec<A>
Iterate the ArrayVec
with mutable references to each element.
use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3]); for elt in &mut array { // ... }
type Item = &'a mut A::Item
type IntoIter = IterMut<'a, A::Item>
fn into_iter(self) -> Self::IntoIter
impl<A: Array> IntoIterator for ArrayVec<A>
Iterate the ArrayVec
with each element by value.
The vector is consumed by this operation.
use arrayvec::ArrayVec; for elt in ArrayVec::from([1, 2, 3]) { // ... }
impl<A: Array> Extend<A::Item> for ArrayVec<A>
Extend the ArrayVec
with an iterator.
Does not extract more items than there is space for. No error occurs if there are more iterator elements.
fn extend<T: IntoIterator<Item=A::Item>>(&mut self, iter: T)
impl<A: Array> FromIterator<A::Item> for ArrayVec<A>
Create an ArrayVec
from an iterator.
Does not extract more items than there is space for. No error occurs if there are more iterator elements.
fn from_iter<T: IntoIterator<Item=A::Item>>(iter: T) -> Self
impl<A: Array> Clone for ArrayVec<A> where A::Item: Clone
fn clone(&self) -> Self
fn clone_from(&mut self, rhs: &Self)
impl<A: Array> Hash for ArrayVec<A> where A::Item: Hash
fn hash<H: Hasher>(&self, state: &mut H)
1.3.0fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher
impl<A: Array> PartialEq for ArrayVec<A> where A::Item: PartialEq
impl<A: Array> PartialEq<[A::Item]> for ArrayVec<A> where A::Item: PartialEq
impl<A: Array> Eq for ArrayVec<A> where A::Item: Eq
impl<A: Array> Borrow<[A::Item]> for ArrayVec<A>
impl<A: Array> BorrowMut<[A::Item]> for ArrayVec<A>
fn borrow_mut(&mut self) -> &mut [A::Item]
impl<A: Array> AsRef<[A::Item]> for ArrayVec<A>
impl<A: Array> AsMut<[A::Item]> for ArrayVec<A>
impl<A: Array> Debug for ArrayVec<A> where A::Item: Debug
impl<A: Array> Default for ArrayVec<A>
impl<A: Array> PartialOrd for ArrayVec<A> where A::Item: PartialOrd
fn partial_cmp(&self, other: &ArrayVec<A>) -> Option<Ordering>
fn lt(&self, other: &Self) -> bool
fn le(&self, other: &Self) -> bool
fn ge(&self, other: &Self) -> bool
fn gt(&self, other: &Self) -> bool
impl<A: Array> Ord for ArrayVec<A> where A::Item: Ord
impl<A: Array<Item=u8>> Write for ArrayVec<A>
Write
appends written data to the end of the vector.
Requires features="std"
.